Drehschieberpumpe Edelstahl "Low Volume"

VORTEILE

Einfache Bauweise Selbstansaugend Laufruhig Hoher Druck kleine Förderleistung Ökonomisch NSF gelistet für Trinkwasser

EINSATZBEREICH

Post Mix Getränkeautomaten Sodawasser Zirkulation Umkehrosmose Kühlsysteme Filtration

BESCHREIBUNG

Drehschieberpumpen mit Gehäuse und Rotor aus Edelstahl (AISI 303), Innenteile und Schieber aus techn. Kohle. Saug- und Druckanschlüsse sind 3/8" NPT Gewinde.

Pumpen sind optional mit eingebautem balanciertem Bypassventil ausgeführt. Als weitere Option sind diese Pumpen mit einem 3- Loch Flansch ausgerüstet.

Maximale Förderleistung 450 l/h, max. Förderdruck 16 bar, max. Temperatur 90°C.

MOTORDATEN

Motortype	6900011 22287S	6900012 22291S	Asy Motor	Asy Motor
Spannung (V)	230	230	230 od 400	230 od 400
Frequenz (Hz)	50	50/60	50/60 1450	50/60 1450
Drehzahl (min-1)	1450	1450		
Stromaufnahme (A)	1,8	2,2	IP55	IP55
Schutzklasse	offen	offen	180	250
Leistung (W)	180	250		
Gewicht Pumpe mit Motor (kg)	4	4		

Drehschieberpumpe Messing "Low Volume"

VORTEILE

Einfache Bauweise Selbstansaugend Laufruhig Hoher Druck kleine Förderleistung Ökonomisch NSF gelistet für Trinkwasser

EINSATZBEREICH

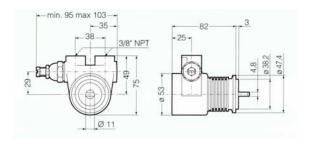
Post Mix Getränkeautomaten Espresso Kaffeemaschinen Umkehrosmose Kühlsysteme Filtration

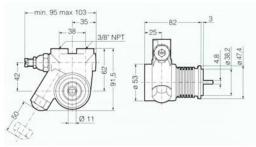
BESCHREIBUNG

Drehschieberpumpen mit Messingehäuse, Edelstahl AISI 303 Rotor Innenteile und Schieber aus techn. Kohle. Saug- und Druckanschlüsse sind 3/8" NPT Gewinde.

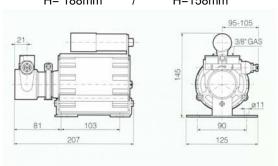
Pumpen sind optional mit eingebautem balanciertem Bypassventil ausgeführt. Als weitere Option sind diese Pumpen mit einem eingebauten 71 mesh Filter ausgeführt.

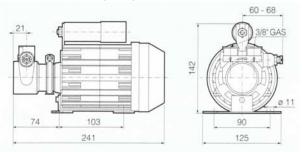
Maximale Förderleistung 450 l/h, max. Förderdruck 16 bar, max. Temperatur 90°C.


MOTORDATEN

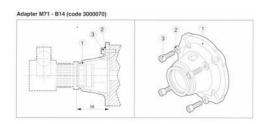

Motortype	6900011 22287S	6900012 22291S	Asy Motor	Asy Motor
Spannung (V)	230	230	230 od 400	230 od 400
Frequenz (Hz)	50	50/60	50/60 1450	50/60 1450
Drehzahl (min-1)	1450	1450		
Stromaufnahme (A)	1,8	2,2	IP55	IP55
Schutzklasse	offen	offen	180	250
Leistung (W)	180	250		
Gewicht Pumpe mit Motor (kg)	4	4		

Drehschieberpumpe Messing "Low Volume"


Abmessungen

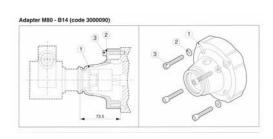


Motor Type 6900011 / 6900012 offen 180W L= 257mm / 250W L= 282mm H= 188mm / H=158mm



Type Asy Motor BG71 (0,25 od. 0,37kW) 230V L/H= 346/170 400V L/H= 363/183 Adapterkit nicht gezeigt

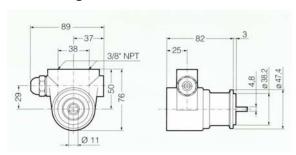
Pos.	Beschreibung	180W M71	250W M80
1	Pumpe	-	-
2	V-Clamp	3000160	300160
3	Kupplung	3000040	3000080
4	Adapter Kit	3000070	3000090


Adapterkit mit Asy Motor 180W M71B14

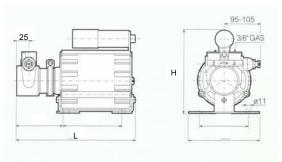
Leistungsdiagramme

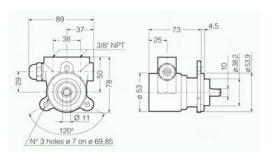
MO	DEL P	O/PA	070	071	074	071x	074x	100	101	104	101x	104x	1500	1501	1504	1501x	1504x	200	201	204	201x	204			
	Wh) at 2				100				150					190						236					
	(h) at 7				89					139			179						225						
		4 BAR	-		70	_				120					160					206					
Figure					A-A				7	B-B	Labor		C-C						D-D						
By-Pa			NO	STD	BAL		BAL	NO		BAL	STD		NO	STD	BAL	STD	BAL	NO		BAL	STD				
Built in filter				NO	lane.		/ES	-	NO	-		YES	-	NO			ES		NO		YE				
	DEL P		2510	2501			2504x	300	301	304	301x	304x	3500	3501	3504	3501x	3504x	400	401		401x	404			
	Vh) at 2				295				345					390						445					
	(h) at 7 (h) at 1				265					334 315					379 360			-		434					
Figure		4 DAM	E-E							515 F-F					G-G			\vdash		415 H-F					
	STAND	ADD	BAL =	DALL				-		1-4					0.0	_		-		n-r	_				
120-	450	Н	_	_																					
GPH	500																			140	0 RPI				
		G							-		_	-	_	_							Н				
100	400		-	-	_	_																			
	350	F															_		-	_	G				
80-		E									_	-	-	-	_						F				
00	300					_	_	-	-											\neg	E	1			
-	250	D		-																					
60	200	C									_		-								D				
7.1	200	В					-	-			_										C				
40-	150					_	_	-	-	_	_										В				
	100	_ A		-																					
20								1									_	_			A				
	50																								
0-	0																								
	-	0	1	2	3	4		5	6	7		8	9	10	11	12	1	3	14	15	1	BBAR			
		0	20		40		30	8	۸	100		120		40	160		180		200	0.0	0 PSI				

Adapterkit mit Asy Motor 250W M80B14

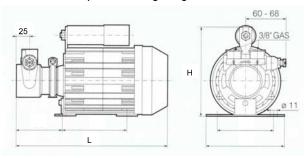


Tuma Pumpensysteme GmbH. A-1230 Wien, Eitnergassee 12, AustriaTel +43 / 1 / 914 93 40 Fax +43 / 1 / 914 14 46

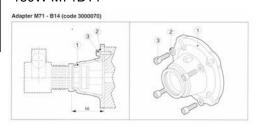

Email sales@tumapumpen.at, Web www.tumapumpen.at


Drehschieberpumpe Edelstahl "Low Volume"

Abmessungen



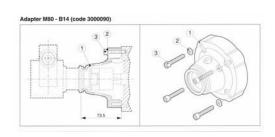
Motor Type 6900011 / 6900012 offen 180W L= 257mm / 250W L= 282mm H= 188mm / H=158mm



Type Asy Motor BG71 (0,25 od. 0,37kW) 230V L/H= 346/170 400V L/H= 363/183 Adapterkit nicht gezeigt

Pos.	Beschreibung	180W M71	250W M80
1	Pumpe	1	-
2	V-Clamp	3000160	300160
3	Kupplung	3000040	3000080
4	Adapter Kit	3000070	3000090

Adapterkit mit Asy Motor 180W M71B14



Leistungsdiagramme

Flow in the ZBAR 100 150 190 236 190 236 190 190 236 190 190 236 190 190 236 190 190 236 190 190 236 190 190 236 190 190 236 190 190 236 190															
Row light at BAR 89 139 179 225 179 225 179	MODEL PO/PA	0710	0711	0711F	110	111	111F	1510	1511	1511F	210	211	211F		
Figure									190			236			
Figure						139			179						
Mount											206				
By-Pass NO YES N	Figure		A-A			B-B			C-C		D-D				
MODE_POPA 2510 2511 2511F 310 311 311F 3500 3501 3511F 410 411 415 4	Mount	Cla	amp	Flange	Cla	amp	Flange	Cla	emp	Flange	Cla	amp	Flange		
Flow Inhi at BAR 295 345 390 445	By-Pass	NO	1	ES .	NO		YES	NO	1	YES .	NO	Y	ES		
Flow	MODEL PO/PA	2510	2511	2511F	310	311	311F	3500	3501	3511F	410	411	411F		
Row lish at 14 BAR 265 315 390 415			295			345			390			445			
Figure E-E F-F G-G H+H GPH I/h 1450 RPM 120 450 G H 100 400 E G G	Flow (l/h) at 7 BAR	284				334			379						
GPH I/h 1450 RPM 120 500 H 1 1450 RPM 100 G H H G G G G G G G G G G G G G G G G	Flow (Vh) at 14 BAR		265						360		415				
120 500 H H G G H H G G G G G G G G G G G G G	Figure		E-E			F-F		G-G				H-H			
120 450 H H 100 400 G G							112			7,1		1450	RPM		
100 400 G	100 H														
100 E													н		
	100 F												G		

| Company | Comp

Adapterkit mit Asy Motor 250W M80B14

Tuma Pumpensysteme GmbH. A-1230 Wien, Eitnergassee 12, AustriaTel +43/1/914 93 40 Fax +43/1/914 93 40 16

Email sales@tumapumpen.at, Web www.tumapumpen.at

Drehschieberpumpe "High Volume"

VORTEILE

Einfache Bauweise Selbstansaugend Laufruhig Hoher Druck kleine Förderleistung Ökonomisch NSF gelistet für Trinkwasser

EINSATZBEREICH

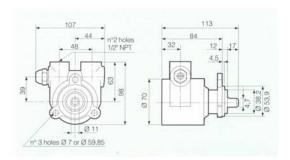
Post Mix Getränkeautomaten Drucksteigerungen Umkehrosmose Kühlsysteme Filtration

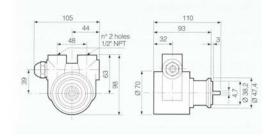
BESCHREIBUNG

Drehschieberpumpen mit Messing oder Edelstahlgehäuse und Rotor (AISI 303), Innenteile und Schieber aus techn. Kohle. Saug- und Druckanschlüsse sind 1/2" NPT Gewinde. Pumpen sind optional mit eingebautem balanciertem Bypassventil ausgeführt. Als weitere Option sind diese Pumpen mit einem 3-Loch Flansch ausgeführt.

Maximale Förderleistung 1050 I/h (bei 1450 Upm), max. Förderdruck 16 bar, max. Temperatur 90°C.

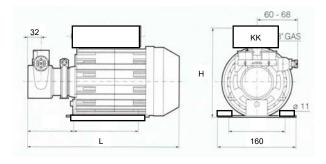
NSF gelistete Pumpen geeignet für Trinkwasser. Falls NSF Vorschrift benötigt wird ändert sich die Typenbezeichnung auf PA.

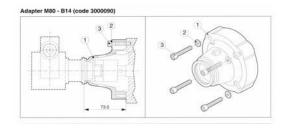

MOTORDATEN


Motortype	Asy Motor BG80	Asy Motor BG80
Spannung (V)	230 od 400V	230 od 400V
Frequenz (Hz)	50/60	50/60
Drehzahl (min-1)	1450	1450
Schutzklasse	IP55	IP55
Leistung (W)	550	750
Gewicht Pumpe mit Motor (kg)		

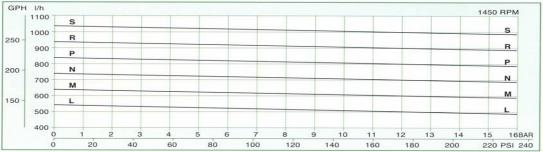
Drehschieberpumpe "High Volume"

Abmessungen




Type Asy Motor BG80 (0,55 od. 0,75kW) 230V L/H= 400/217 400V L/H= 400/217

Adapterkit nicht gezeigt


Pos.	Beschreibung	Motor 550/750W M80
1	Pumpe	-
2	V-Clamp	300160
3	Kupplung	3000080
4	Adapter Kit	3000090

Adapterkit mit Asy Motor 550/750W M80B14

Leistungsdiagramme

MODEL PO/PA Brass	500	501	500F	501F	600	601	600F	601F	700	701	700F	701F	800	801	800F	801F	900	901	900F	901F	1000	1001	1000F	1001F	
MODEL PO/PA Stainless steel	510	511	510F	511F	610	611	610F	611F	710	711	710F	711F	810	811	810F	811F	910	911	910F	911F	1010	1011	1010F	1011F	
I/h at 2 bar		54	40			640				74	40		840					940				1040			
I/h at 7 bar		52	20			620				720 820					920				1020						
I/h at 14 bar		45	97			59	97		697					79	97		897				997				
Figure		L	-L			M	M		N-N			P-P				B-B				S-S					
By-Pass valve	NO	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO	YES	
Flange mount	NO.	NO	YES	YES	NO	NO	YES	YES	NO	NO	YES	YES	NO	NO	YES	YES	NO	NO	YES		NO	NO	YES	YES	
Clamp mount	YES	YES	NO	NO	YES	YES	NO	NO	YES	YES	NO	NO	YES	YES	NO	NO	YES	YES	NO		YES	YES	NO	NO	

Characteristic at constant motor speed (1450 RPM), with water at 20°C and by-pass blocked - Figures of flow are averages Pump weight: 1,9 kg (clamp mount) and 2 kg (flange mount)

